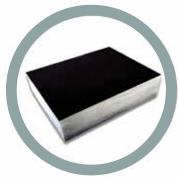


Consigli per la lavorazione


COSA È IL TOOLOX?

Toolox® è un moderno acciaio per utensili pre-temprato bonificato, consegnato al cliente con proprietà meccaniche controllate e garantite. L'idea di base è quella di risparmiare il vostro tempo fornendo un acciaio di alta qualità trattato termicamente e pronto per l'uso. Questo materiale garantisce una riduzione dei costi e dei rischi e consente di risparmiare tempo prezioso nel vostro processo di produzione grazie alla sua ottima lavorabilità. Questo, combinato con il vantaggio di lavorare con il più duro acciaio per utensili pre-temprato al mondo, vi dà un materiale semplice usare, che si presta ad una grande varietà di utilizzi.

Toolox si basa sul concetto metallurgico di basso carbonio che trovate in Hardox e Weldox, ma è stato sviluppato appositamente per stampi e componenti di macchine che lavorano ad alte temperature. Ha ottime proprietà di resistenza alla fatica e si può effettivamente aumentare la durezza superficiale con nitrurazione o rivestimenti PVD per ottenere un maggiore controllo sulla durata dei vostri strumenti ed attrezzature.

Nelle informazioni che seguono, troverete le nostre raccomandazioni sugli utensili per lavorare Toolox. Simili utensili da altri fornitori potrebbero andar bene, ma qui ci sono gli unici che abbiamo testato fino ad ora.

CONSIGLI PER LA LAVORAZIONE

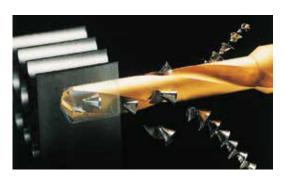
1. Il vostro cliente ha un' idea

2. Voi ci lavorate sopra...

3. Trasporto per il trattamento

4. Tempra e rinvenimento

5. Aggiustaggio post-tempra



6. Produzione

CONSIGLI PER LA FORATURA

PUNTE IN HSS

Utilizzare solo punte HSS dove avete condizioni della macchina non perfettamente stabili. Se invece le condizioni della macchina sono buone potete scegliere fra diverse tipologie di punte in metallo duro integrali o saldobrasate e frese con testine intercambiabili.

Utilizzate una punta in HSS-Co con un angolo di elica piccolo ed un corpo robusto che possa resistere a coppie di torsione elevate

Fori singoli possono essere fornati con normali punte in HSS. Per le produzioni, sono racconandate punte microlegate HSS-E o al Cobalto HSS-Co

	Toolox 33	Toolox 40	Toolox 44
Vc m/min	~ 15	~ 9	~ 7
Dc (mm)	Avanza	mento (mm/min) e velocità	(rpm)
5	0,10/950	0,05/570	0,05/445
10	0,10/475	0,10/290	0,09/220
15	0,16/325	0,16/190	0,15/150
20	0,23/235	0,22/150	0,20/110
25	0,30/195	0,28/110	0,25/90
30	0,35/165	0,35/90	0,30/75
*35	0,40/136	0,40/80	0,35/63
*40	0,45/119 0,45/70		0,40/55

* QUANDO SI UTILIZZANO PUNTE DI GRANDI DIMENSIONI (Ø> 30 MM), PENSATE A QUANTO SEGUE:

- 1. La macchina deve essere grande e stabile per le alte sollecitazioni
- 2. Controllare che il mandrino non abbia giochi.
- 3. Assicuratevi che il pezzo sia ben serrato.
- 4. Verificate che la potenza del motore sia uguale o superiore a 7,5 kW.

CONSIGLI PER RIDURRE LE VIBRAZIONI E AUMENTARE LA DURATA DI VITA DELLE PUNTE

- ▶ Minimizzare le distanze fra il pezzo da forare la punta.
- Non usare punte più lunghe del necessario.
- ▶ Utilizzare sempre supporti in materiale metallico.
- Fissare in modo sicuro e stabile.
- ▶ Utilizzare un basamento o supporto solido e fermo.
- ▶ Usare sempre del liquido di raffreddamento.
- ► Mix refrigerante 8-10%.
- ▶ Poco prima che la punta sfondi, disinserire la velocità di avanzamento per circa un secondo, perché il ritorno elastico può rompere la punta, Re-inserire la velocità di avanzamento quando ritorno elastico è cessato.

PUNTE IN METALLO DURO INTEGRALI

Dati validi per macchinari rigidi, con refrigerazione internac Mix refrigerante 8-10 % per ogni tipo di punta.

	Vc (m/min)	Toolox 33 65-90		Toolox 40 50-70		Toolox 44 40-65	
모	fn (mm/rev)	min-max	iniziale	min-max	iniziale	min-max	iniziale
ame	3.0 -5.0	0,08-0,15	0,10	0,06-0,12	0,08	0,06-0,11	0,07
etro	5.01-10.0	0,09-0,16	0,12	0,08-0,15	0,11	0,08-0,13	0,10
Dc	10.01-15.0	0,16-0,22	0,18	0,14-0,20	0,16	0,12-0,18	0,15
	15.01-20.0	0,22-0,28	0,25	0,16-0,24	0,20	0,16-0,20	0,18

^{*} Punte 7 x Dc ridurre avanzamento ~ 20 %

PUNTE CON TESTINE INTERCAMBIABILI SERTI IN METALLO DURO SALDOBRASATI

Dati validi per macchinari rigidi con refrigerazione interna.

	Vc (m/min)	Toolox 33 50-80		Toolox 40 50-65		Toolox 44 40-60	
므	fn (mm/rev)	min-max	iniziale	min-max	iniziale	min-max	iniziale
Diametro	7,5-12,0	0,10-0,16	0,13	0,08-0,15	0,12	0,08-0,14	0,11
	12,01-20,0	0,15-0,23	0,20	0,12-0,22	0,17	0,12-0,20	0,15
Dc	20.01-25.0	0,18-0,27	0,22	0,15-0,25	0,19	0,14-0,22	0,17
	25,01-30.0	0,20-0,30	0,24	0,17-0,27	0,21	0,16-0,25	0,19

PUNTE LUNGHEZZA 16-20 X DC

Dati validi per macchinari rigidi con refrigerazione interna.

	Vc (m/min)	Toolox 33 50-70		Toolox 40 50-65		Toolox 44 40-60	
말	fn (mm/rev)	min-max	iniziale	min-max	iniziale	min-max	iniziale
Diametro	6.0	0,12-0,16	0,14	0,10-0,15	0,12	0,08-0,14	0,11
	8.0	0,14-0,20	0,16	0,11-0,18	0,14	0,10-0,18	0,13
Dc	10.0	0,17-0,24	0,19	0,13-0,22	0,16	0,12-0,21	0,15
	12,0	0,18-0,26	0,20	0,15-0,24	0,18	0,14-0,23	0,17

^{*} I dati di taglio in questa pagina sono stati calcolati con la collaborazione di Seco Tools.

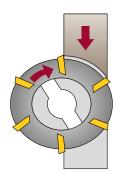
^{*} Punte con refrigerante esterno, ridurre velocità ed avanzamento ~ 20 %

^{*} Punte lunghe 25-30 x Dc ridurre avanzamento ~ 15-20 % * Raccomandiamo di utilizzare almeno 25 bars di pressione per il refrigerante interno.

CONSIGLI PER LA FRESATURA

STAFFAGGIO

Toolox ha un bassissimo livello di tensioni residue. Per ottenere un buon serraggio, assicurarsi di utilizzare staffe non deformabili. Se le piastre sono tagliate a gas, fresare 5-10 mm dal bordo tagliato con la fiamma per ottenere un grezzo esente da tensioni residue.


La lavorabilità del Toolox è stata migliorata. Durante la fresatura si noterà come i trucioli prodotti sono di un colore molto blu. Abbiamo modificato la morfolgia del carburo rispetto ai tradizionali acciai per utensili, utilizzando meno carbonio nel Toolox. In tal modo il calore generato durante la fresatura viene trasferito nel truciolo e non sullo spigolo di taglio o sul pezzo.



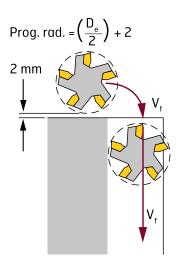
QUALCHE ALTRO CONSIGLIO

- ► Posizionare la fresa fuori centro (a sinistra) per ottenere un truciolo più spesso all' ingresso ed evitare un truciolo di maggiore spessore in uscita.
- Evitare di fresare centralmente rispetto alla fresa, poiché guesto potrebbe generare vibrazioni.
- ► Fresare sempre in verso concorde
- ► La raccomandazione è che l'impegno radiale della lama sia del 25/75% del diametro.

Se state entrando nel pezzo da lavorare con il Metodo di ingresso raggiato, lo spessore del truciolo in uscita è sempre zero, e vi aiuterà ad allungare la vita dell'utensile.

Metodo di ingresso raggiato

Consumo dopo 800 passate



Ingresso diretto nel pezzo

Consumo dopo 390 passate

Metodo di ingresso raggiato

GRADO DEGLI INSERTI PER FRESATURA

	ISO	ANSI	
P	01 10 20 30 40 50	C8 C7 C6 C5	•
М	10 20 30 40		† +
К	01 10 20 30 40	C4 C3 C2 C1	+
н	01 10 20 30	C4 C3 C2 C1	† +

- ★ Resistenza all'usura
- ▼ Tenacità

P ISO P = Acciaio

M ISO M = Acciaio inossidabile

K ISO K = Ghisa

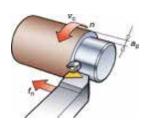
H ISO H = Acciaio temperato

Gli ultimi due numeri del grado dell'inserto indicano dove si posiziona sulla scala. Se ha prevalentemente resistenza all'usura o tenacità.

GEOMETRIA DELL'INSERTO

La geometria influisce su molti parametri nel processo di taglio. Un inserto con tagliente robusto può lavorare a carichi più elevati, ma genera anche forze di taglio più elevate, consuma più potenza e genera più calore.

	Geometria (vedi disegno sopra)						
Parametri	Forma L	Forma M	Forma H				
Forza dello spigolo							
Forze di taglio							
Consumo potenza disponibile	Basso	Medio	Alto				
Diametro massimo truciolo			/				
Calore generato	4						


^{*} Utilizzare inserti di grado P30-50 con geometria di taglio L ed un corpo fresa con passo grosso se la potenza del macchinario è bassa o le condizioni di fresatura non sono perfettamente stabili.

^{*} Esempio inserto di grado 1030.

CONSIGLI PER LA TORNITURA

I dati per le lavorazioni qui di seguito sono applicabili a gradi tenaci di metallo duro. Questi sono necessari in operazioni in cui si verifica un impatto come nel caso di tornitura di parti con bordi ossitagliati.

Velocità (m/min)	Toolox 33 150-200	Toolox 40 90-140	Toolox 44 80-120
Avanzamento (f _n)	min-max	min-max	min-max
Gradi inserto P25	0,20-0,40	0,20-0,40	0,20-0,40

Con un avanzamento maggiore, diminuire la velocità.

Formula per tornitura		Definizioni	
$V_c = \frac{\pi * d * n}{1000}$ $n = \frac{V_c * 1000}{\pi * d}$	vf = n * f _n	V _c = velocità di taglio (m/min) n = velocità (rpm) f _n = avanzamento (mm/rev) v _f = avanzamento (mm/min)	d = pezzo da lavorare Ø π = 3,14 ap = profondità di taglio (mm)

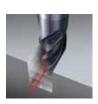
SPIANATURA

Gli inserti rotondi hanno spigoli di taglio forti e sono ottimi quando la superficie presenta fori, cavità, etc.

Raccomandazioni per condizioni di lavoro medie con un inserto a 45°							
Vc (m/min)	Toolox 33 180-220		Toolox 40 140-180		Toolox 44 120-160		
Avanzamento (fz)	min-max	iniziale	min-max	iniziale	min-max	iniziale	
Inserto grado P30	0,15-0,35	0,25	0,15-0,35	0,25	0,15-0,35	0,25	

SPALLAMENTO

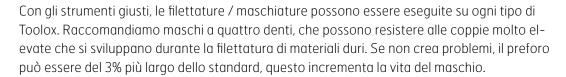
Raccomandazioni per condizioni di lavoro medie con un inserto a 90°								
Vc (m/min)	Toolox 33 180-220		Toolox 40 140-180		Toolox 44 120-160			
Avanzamento (fz)	min-max	iniziale	min-max	iniziale	min-max	iniziale		
Inserto grado P30	0,12-0,25	0,17	0,12-0,25	0,17	0,12-0,25	0,17		



FRESATURA CON UTENSILI IN METALLO DURO INTEGRALE

Parametri per fresatura cave					Parametri per spallamenti		
		Toolox 33	Toolox 40	Toolox 44	Toolox 33	Toolox 40	Toolox 44
	Vc (m/min)	85-110	75-100	70-95	200-230	180-210	160-190
Av	anzamento (fz)	min-max	min-max	min-max	min-max	min-max	min-max
Dic	3,0-6,0	0,01-0,03	0,01-0,03	0,01-0,03	0,02-0,05	0,02-0,04	0,02-0,04
Diametro	8,0-12,0	0,04-0,07	0,03-0,06	0,03-0,06	0,07-0,10	0,06-0,09	0,06-0,09
tro	14,0-20,0	0,07-0,10	0,06-0,09	0,06-0,08	0,10-0,14	0,10-0,13	0,10-0,12

^{*} Se ne avete la possibilità, usate solo aria compressa per rimuovere il truciolo, ed utilizzate mandrini con attacco weldon per utensili sopra il Ø 10.


Fresatura cave ap = max 0.5 x D (profondità passata)

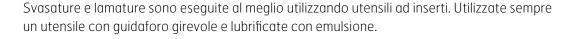
Spallamentoap (usare tutto il tagliente)
ae (profondità radiale) max 0.1 x D

FILETTATURA CON FRESE

* E' raccomandato l'utilizzo di lubrificanti come olio da taglio o pasta per filettature.

	Toolox 33	Toolox 40	Toolox 44
Vc (m/min)	7-10	4-9	3-5
Dimensioni	Giri (rpm)	Giri (rpm)	Giri (rpm)
M5	445-635	255-570	190-320
M6	370-530	210-475	160-265
M8	270-400	160-360	120-200
M10	220-320	125-285	95-160
M12	185-265	105-240	80-130
M16	140-200	80-180	60-100
M20	110-160	60-140	45-80

^{*} Raccomandiamo filettatura con frese ad interpolazione per filetti inferiori a M5, specialmente su Toolox 40 e 44.



	Toolox 33	Toolox 40	Toolox 44
Vc (m/min)	80-110	60-80	50-70
fz mm	0,03-0,06	0,02-0,05	0,02-0,05

^{*} Per effettuare questa operazione, è necessario utilizzare un centro di lavoro CNC ed il filetto deve essere eseguito in due passaggi.

LAMATURA E SVASATURA

Vc (m/min)	Toolox 33 40 - 80	Toolox 40 25 - 70	Toolox 44 20 - 50
Avanz. mm/rev	0,10-0,20	0,10-0,20	0,10-0,20
Dc (mm)		Giri (rpm)	
19	670-1340	420-1175	335-840
24	530-1060	330-930	265-665
34	375-750	235-655	185-470
42	300-600	190-530	150-380
57	225-440	140-390	110-280

^{*} Ridurre i dati di taglio del 30% circa per le svasature.

RISULTATI DEI NOSTRI TEST

INFORMAZIONI SUL CENTRO DI LAVORO

VMC FADAL 4020 HT modello 1997

Mandrino: ISO 40 Refrigerante: interno

Velocità mandrino: max 10,000 rpm Potenza effettiva mandrino: 16,8 kw

Coppia massima: 303Nm.

		II cer	ntro di lavoro ut	ilizzato per i test			
Toolox 33	Utensile	Ø	Vc	f	ар	ae	tempo
Spallamento	Coromill 490	50	180	0,17	4 mm	13 mm	196 min
	Runtime 132 min			Runtime 196 min			
							9
Toolox 40	Utensile	Ø	Vc	f	ар	ae	tempo
Spianatura	Coromill 345	100	160	0,25	2 mm	68 mm	43 min
		0		0			9
							1

Toolox 44	Utensile	Ø	Vc	f	ар	ae	tempo
Spianatura	Coromill 345	100	150	0,25	2 mm	61 mm	32 min
	0	0		0			0

Toolox 44	Utensile	Ø	Vc	f	ар	ae	tempo
Spallamento	End milling	16	180	0,12	34 mm	1,6 mm	103 min
Foto dopo 250 passate ed							

utilizzo di 72 min.

Toolox 33	Utensile	Ø	Vc	fn	Totale fori	Profondità	Refrigerante
Foratura fori ciechi	Corodrill 840	6,8	80	0,12	1105	23 mm	1,9 l/min
Dopo 264 forature	Dopo 1105 foratu	re Tipo ide	ale di truciolo				

Toolox 40	Utensile	Ø	Vc	fn	Totale fori	Profondità	Refrigerante
Foratura fori chiechi	Seco Feedmax	4,3	70	0,12	608	16 mm	0,2 l /min
Dopo 608 forature							
The same of							

Toolox 44	Utensile	Ø	Vc	fn	Totale fori	Profondità	Refrigerante
Foratura fori ciechi	Seco Feedmax	4,3	60	0,06	438	15 mm	0,2 l /min
Dopo 438 forature							

Toolox 40	Utensile	punta Ø	Ø	Vc	Profondità	Totale fori
Foratura fori ciechi	Manigley 131/3 DUO	4,3	M5	11	12 mm	330

Toolox 40	Utensile	punta Ø	Ø	Vc	Profondità	Totale fori
Foratura fori ciechi	Manigley 131/3 DUO	10,2	M12	8	24 mm	217

Toolox 44	Utensile	punta Ø	Ø	Vc	Profondità	Totale fori
Foratura fori ciechi	Manigley 105/4 DUO	4,3	M5	3	10 mm	183

Dopo 183 filettature

Toolox 40	Utensile	punta Ø	Ø	Vc	Profondità	Totale fori
Foratura fori ciechi	Rekord 2 DF-NI TICN	14,2	M16	6	25 mm	276
Dono 276 filettature						

UTENSILI RACCOMANDATI PER IL TOOLOX

FORARE IL TOOLOX

Utensile	Codice	Gamma diametri
Seco Feedmax	* SD203A-12.0-36-12R1	2,0-20,0

^{*} Example for Ø 12

Suplier: Seco Svezia

www.secotools.com

Utensile	Codice	Gamma diametri
Seco Feedmax	* SD216A-12.0-180-12R1	3,0-14,10

^{*} Example for Ø 12

Punte lunghe con 16-20 x D in metallo duro integrale

Suplier: Seco Svezia www.secotools.com

Utensile	Codice	Gamma diametri
Cordrill R840 Delta C	R840-xxxx-30-A1A	3,0-20,0

Punte in metallo duro integrale Fornitore:

Fornitore: Sandvik Coromant AB Svezia

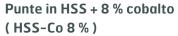
www.sandvik.coromant.com

Utensile	Codice	Gamma diametri
Crownloc	* SD103-12.00-40-16R7	10,0-25,99

^{*} Example for Ø 12

Utensile	Codice	Gamma diametri
Chamdrill	DCM xxx-xxx-xxA-xx.xx	7,5-25,9

Punte con testine intercambiabili Grado di durezza testine: P


Suplier: Seco Svezia

www.secotools.com

FORARE IL TOOLOX

Utensile	Codice	Gamma diametri
HSS -E Co 8 Taper Shank Drills, WN 103	832xxxxx	8,0-40,0

Fornitore: Alpen-MayKestag

Austria

www.alpenmaykestag.com

Utensile	Codice	Gamma diametri
HSS A100	A100xx.xx	0,2-20,0

Punte in HSS standard Solo per Toolox 33

Fornitore: Dormer

Svezia

www.dormertools.com

FILETTARE IL TOOLOX

Maschiatura per fori cechi

Utensile	Codice	Gamma diametri
1641 TC	1641TC Mxx	M3-M24

Maschio HSS-P con rivestimento TiCN

Fornitore: Yamawa

Japan

www.yamawa.eu

Tap for through holes

Utensile	Codice	Gamma diametri
105/4 DUO	433xx	M3-M30

Maschi HSS-E-PM con rivestimento TiCN

Fornitore: Manigley

Switzerland www.manigley.ch

Maschio per fori ciechi

Utensile	Codice	Gamma diametri
131/3 DUO	433xx	M3-M36

HSSE-PM tap with TiCN coating

Supplier: Manigley Switzerland www.manigley.ch

Maschio per fori ciechi

Utensile	Codice	Gamma diametri
Rekord 1D-TI-TiCN	B0459601.xxxx	M3-M10
Rekord 2D-TI-TiCN	C0459601.xxxx	M12-M24

Maschio HSS-E con rivestimento TiCN

Fornitore: Emuge Franken

Germany

www.emuge.de/english

Maschio per fori passanti

Utensile	Codice	Gamma diametri
Rekord 1C-Ti-TiCN	B0309601.xxxx	M3-M10
Rekord 2C-Ti-TiCN	C0309601.xxxx	M12-M24

FILETTARE CON FRESE

Utensile	Codice	Gamma diametri
GSF-VHM 2xD IKZ-HB TiCN	GSF333106xxxx	M3-M16

Frese per filettare in metallo duro integrale con rivestimento TiCN

Fornitore: Emuge Franken Germany

Octificity . .

www.emuge.de/english

^{*} For information about distributors contact Smicut.

Frese per filettare in metallo duro integrale con rivestimento TiCN

Fornitore: SmiCut Svezia

www.smicut.se

LAMATURE SU TOOLOX

Utilizzate lamatori con inserti indicizzati ed inserti con grado H

Utensile	Codice	Gamma diametri
WHV lamatore	XWHV-xx.x	18.0-75.0

Fornitore: Granlund tool AB Svezia www.granlund.com

SVASATURE SU TOOLOX

Utilizzate svasatori con inserti indicizzabili ed inserti con grado H

Utensile	Codice	Gamma diametri
KV svasatore	xKV9-xx.x	20,5-60,0

Fornitore: Granlund tool AB Svezia www.granlund.com

FRESATURE SU TOOLOX

Utensile	Codice	Gamma diametri
JS 554 Siron-A	JS 554 xxxx	3,0-25,0

Solid end milling cutter with Siron-A coating
Fornitore: Alfa Tool / Seco
Svezia
www.alfatool.se
www.secotools.com

SPIANATURE AD INSERTI SU TOOLOX

Utensile	Codice	Gamma diametri
Coromill 345	345-xxxxxx-13x	40-250

Spianatura con Coromill 345Fornitore: Sandvik Coromant AB
Svezia
www.sandvik.coromant.com

Utensile	Codice	Gamma diametri
Coromill 300	R300-xxxxxx-xxx	10-200

Spianatura con Coromill 300 Fornitore: Sandvik Coromant AB

Svezia

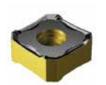
www.sandvik.coromant.com

Utensile	Codice	Gamma diametri
Coromill 490	490-xxxxx-xxx	20-250

Spianatura e spallamento con Coromill 490

Fornitore: Sandvik Coromant AB

www.sandvik.coromant.com


GRADO DEGLI INSERTI PER IL TOOLOX

Utensile	codice	grado	Insert geometry
Coromill 300	R300-xxxxx-Px	1010	L-M-H
Coromiii 300	R300-xxxxx-Px	1030	L-M-H
Coromill 345	345R-1305x-Px	1010	L-M-H
	345R-1305x-Px	1030	L-M-H
Coromill 490	490R-xxxxxxx-Px	1010	L-M
	490R-xxxxxxx-Px	1030	L-M-H

Scegliete inserti di grado P1030 per utilizzo in condizioni normali. Con macchine molto rigide e fissaggi stabili, inserti di grado P1010 possono dare risultati migliori, specialmente per Toolox 40 e 44. In questo caso la velocità di taglio può essere incrementata del 20-30 % circa.

Fornitore: Sandvik Coromant AB Svezia www.sandvik.coromant.com

AREE DI APPLICAZIONE

STAMPI PLASTICA

LAVORAZIONI A FREDDO

LAVORAZIONI A CALDO

COMPONENTI PER MACCHINE

SSAB è un'acciaieria con sede nei Paesi Nordici e negli Stati Uniti. SSAB offre prodotti e servizi ad alto valore aggiunto, sviluppati in stretta collaborazione con i propri clienti per un mondo più forte, più leggero e più sostenibile. SSAB ha dipendenti in oltre 50 Paesi. SSAB ha stabilimenti produttivi in Svezia, Finlandia e negli Stati Uniti. SSAB è quotata al Nasdaq OMX Nordic Exchange di Stoccolma e al Nasdaq OMX di Helsinki. www.ssab.com.

SSAB

SE-613 80 Oxelösund Svezia

Phone: +46 155-25 40 00 Fax: +46 155-25 40 73 E-mail: contact@ssab.com

