

Hardox[®] 400 Round Bars – Turning Recommendations

Typical Properties

Hardness in Brinell	Hardness in Rockwell	Tensile Strength,
(HBW)	(HRC)	Rm (N/mm²)
~ 400	~ 40	

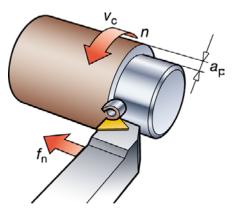
For more specific information see data sheet for $Hardox^{\scriptscriptstyle (\! 8\!)}$ 400 Round Bar.

Cuttingdata Turning	Cemented Carbide	
	Roughing	Finishing
Cutting speed, V_c (m/min)	70 – 90	70 - 130
Feed per revolution, f _n (mm/r)	0.2 – 0.6	0.05 – 0.3
Cutting depth, a_p (mm)	2 – 4	0.5 – 2
Suitable grades	P20 – P35* K20 – K30*	K01 – K20*

* If possible, use a CVD coated cemented carbide.

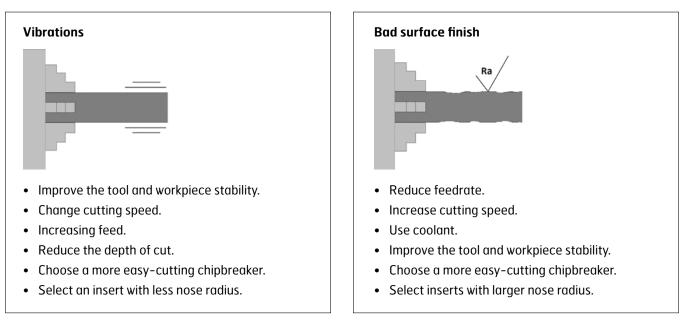
Note

These cutting data should be seen as a starting values. It is up to each workshop to optimize cutting data for each machine.



Remarks

- It is recommended to use cutting fluid when turning. Insert holder with internal cooling channels can be used.
- Use a tougher carbide grade with interrupted cut or face turning of large workpieces.
- At higher Feed rate, lower the cutting speed.


Formulas and definitions

- $V_{c} = \pi x d x n / 1000$
- $n = V_{c} x 1000 / \pi x d$
- $v_f = n x f_n$
- π = 3,14
- V_c = cutting speed (m/min)
- n = speed (rpm) f_n = feed rate (mm/rev) v_f = feed rate (mm/min)
- d = workpiece Ø
- $a_{p} = cutting depth (mm)$

SSAR

Troubleshooting

